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Introduction



Introduction Cauchy theory close to equilibrium Diffusive limit

The VFP and MKV models

General setting
I Confining force −∇E
I −∇k(z) = force at relative distance z ⇒ mean force −∇Φ
I Depending on the scale: diffusion, damping
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Introduction Cauchy theory close to equilibrium Diffusive limit

The VFP and MKV models

The Vlasov-Fokker-Planck model

Random fluctuation and damping of velocity:

X ′′
t = −X ′

t−∇E−∇Φ+
√
2dBt

Vlasov-Fokker-Planck : phase-space density F (t, x , v) of particles∂tF + v · ∇xF −∇x(E +Φ) · ∇vF = ∇v · (vF +∇vF )

Φ(t, x) =
∫
Rd

k(x − y)R(t, y)dy

where R(t, x) =
∫
Rd

F (t, x , v)dv is the macoscopic density.
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Introduction Cauchy theory close to equilibrium Diffusive limit

The VFP and MKV models

The McKean-Vlasov model

Random fluctuation of position:

X ′
t = −∇E−∇Φ+

√
2dBt

McKean-Vlasov : density R(t, x) of particles∂tR = ∆xR +∇x · (R∇x (E +Φ))

Φ(t, x) =
∫
Rd

k(x − y)R(t, y)dy

VFP with time scale ∼ ε, fluctuation/damping ∼ 1
ε :

F (t, x , v) ε→0−−−→ 1
√
2π

d R(t, x)e−|v |2/2
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Introduction Cauchy theory close to equilibrium Diffusive limit

The VFP and MKV models

Our motivation:

1. When is the equilibrium (non-)unique?
2. When is it (un-)stable? Attractive?

Related questions:

1. What is the rate of convergence to equilibrium?
2. Regularizing effects?
3. How well does MKV approximates VFP?
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Introduction Cauchy theory close to equilibrium Diffusive limit

Free energy and equilibria

Free energy for McKean-Vlasov (similar for VFP)

Free energy: F [R ] =

∫
Rd

R log R dx +

∫
Rd

R
(

E +
1

2
Φ

)
dx

dF [R ]

dt +

∫
Rd

R
∣∣∣∇x log

(
eE+ΦR

)∣∣∣2 dx =

∫
Rd
(∂tR)Φskewdx

with Φskew = kskew ∗ R induced by kskew (x) = k(x)−k(−x)
2 .

Consequence: k symmetric ⇒ F Lyapunov

There is always at least one equilibrium R∞ = 1
Z∞

e−E−Φ∞ , and(
dF
dR

[
R1
∞
]
− dF

dR
[
R2
∞
])

·
(
R1
∞ − R2

∞
)
= 0 .

Consequence: ⇒ unique equilibrium
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There is always at least one equilibrium R∞ = 1
Z∞

e−E−Φ∞ , and(
dF
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R1
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]
− dF

dR
[
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∞
])

·
(
R1
∞ − R2

∞
)
= 0 .

Consequence: F strictly convex ⇒ unique equilibrium
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Free energy and equilibria

Free energy for McKean-Vlasov (similar for VFP)

Free energy: F [R ] =

∫
Rd

R log R dx +

∫
Rd

R
(

E +
1

2
k ∗ R

)
dx

dF [R ]

dt +

∫
Rd

R
∣∣∣∇x log

(
eE+ΦR

)∣∣∣2 dx =

∫
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2 .
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dF
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[
R1
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]
− dF

dR
[
R2
∞
])

·
(
R1
∞ − R2

∞
)
= 0 .

Consequence: <k̂ ≥ 0 ⇒ unique equilibrium
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Introduction Cauchy theory close to equilibrium Diffusive limit

Examples for MKV and VFP

Examples: effect of the interactions on the dynamics

The ideal situation seems to be when k is symmetric and k̂ ≥ 0.
I Symmetric & positive: Coulomb : k(x) = |x |2−d

Unique globally attractive equilibrium for VFP: Bouchut, Dolbeault (1995)

And otherwise?
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Examples for MKV and VFP

Examples: effect of the interactions on the dynamics
The ideal situation seems to be when k is symmetric and k̂ ≥ 0.
I Symmetric & positive: Coulomb : k(x) = |x |2−d

And otherwise?
I Symmetric & ����positive: Kuramoto, k(x) = −I cos(x) (I � 1)

Carillo et Al. (2020), work in progress with Cesbron, Herda
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Introduction Cauchy theory close to equilibrium Diffusive limit

Examples for MKV and VFP

Examples: effect of the interactions on the dynamics
The ideal situation seems to be when k is symmetric and k̂ ≥ 0.
I Symmetric & positive: Coulomb : k(x) = |x |2−d

And otherwise?
I Symmetric & ����positive: Kuramoto, k(x) = −I cos(x) (I � 1)
I ������Symmetric: Synchrotron model

Roussel (PhD, 2014), Cai (2011)
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Introduction Cauchy theory close to equilibrium Diffusive limit

Main result

Main results

We make the following assumptions:
1. The interaction term is a bounded operator

‖k ∗ ρ‖Lp + ‖∇k ∗ ρ‖Lq . ‖ρ‖L1∩L2 , p, q ≥ 2

2. The interactions are almost symmetric–positive
‖kskew ∗ ρ‖Lp + ‖∇kskew ∗ ρ‖Lq ≤ δ‖ρ‖L1∩L2

〈k ∗ ρ, ρ〉L2 =
〈

k̂ρ̂, ρ̂
〉

L2
≥ −δ‖ρ‖2L1∩L2

(0 ≤ δ � 1)

NB: the symmetric-positive part of k can be large!
3. E is “smooth” and “confines in a bounded region of space”
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Introduction Cauchy theory close to equilibrium Diffusive limit

Main result

Main results

We make the following assumptions:
1. The interaction term is a bounded operator
2. The interactions are almost symmetric–positive
3. E is “smooth” and “confines in a bounded region of space”

Theorem
The steady state F∞ is locally attractive and the flow regularizes:

∀n, t ≥ 0 t
3n
2 eλt‖F (t)− F∞‖Hs+n ≤ Cn‖F (0)− F∞‖Hs

where s > d
q − 1

3 and ‖F‖Hs = ‖F/F∞‖Hs(F∞).
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Main results

We make the following assumptions:
1. The interaction term is a bounded operator
2. The interactions are almost symmetric–positive
3. E is “smooth” and “confines in a bounded region of space”

Theorem
The steady state F∞ is locally attractive and the flow regularizes:

∀n, t ≥ 0 t
3n
2 eλt‖F (t)− F∞‖Hs+n ≤ Cn‖F (0)− F∞‖Hs

where s > d
q − 1

3 and ‖F‖Hs ≈ ‖F‖Hs
(

F−1
∞

) + ‖|∇xE |sF‖L2
(

F−1
∞

).
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Introduction Cauchy theory close to equilibrium Diffusive limit

Main result

Main results
We make the following assumptions:

1. The interaction term is a bounded operator
2. The interactions are almost symmetric–positive
3. E is “smooth” and “confines in a bounded region of space”

Novelties of the Cauchy theory
I Taking into account non-symmetric interactions

Cesbron, Herda (2024): weakly nonlinear regime for synchrotron

I No size restriction for symmetric-positive interactions
Addala, Dolbeault, Li, Tayeb (2020),Toshpulatov (2025): Poisson

I Working in Hs spaces with s ∈ [0,∞)
Allows for weakly regularizing interactions (q = 2), higher order regularization

I For Poisson interactions: strongly nonlinear regime in H
1
6
+

x L2
v

Hérau, Thomann (2016): weakly nonlinear regime in H
1
2
+

x,v

7 / 17



Introduction Cauchy theory close to equilibrium Diffusive limit

Main result

Main results
We make the following assumptions:

1. The interaction term is a bounded operator
2. The interactions are almost symmetric–positive
3. E is “smooth” and “confines in a bounded region of space”

Theorem
The scaled density F ε(t, x , v) = F

( t
ε2
, x
ε , v

)
is the sum of

I its limit R(t, x)M(v) where R solves MKV with

R(0, x) =
∫

F ε(0, x , v)dv , ‖R(t)−R∞‖Hs . e−λt‖R(0)−R∞‖Hs

I an initial layer controlled by e−λt/ε2‖F ε(0)− R(0)M‖Hs

I an error term controlled by εe−λt‖F ε(0)‖Hs+1
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Introduction Cauchy theory close to equilibrium Diffusive limit

Main result

Main results

We make the following assumptions:
1. The interaction term is a bounded operator
2. The interactions are almost symmetric–positive
3. E is “smooth” and “confines in a bounded region of space”

Novelties of the diffusive limit
I Uniform rate of convergence in ε and t by energy methods

Blaustein (2023), Herda, Rodrigues (2018): integral rate of convergence
Zhong (2022): spectral method

I Loss of only 1 derivative for convergence O(ε)
Zhong (2022): 2 derivatives
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Introduction Cauchy theory close to equilibrium Diffusive limit

How to study the perturbation equation

Perturbation: (F ,Φ,R) = (F∞,Φ∞,R∞) + (f , φ, ρ)

Functional framework: hilbert space L2(F−1
∞ dxdv) where

F∞(x , v) = 1

Z∞
e−

|v|2
2

−E∞(x) , E∞(x) = E(x) + Φ∞(x)

We denote the velocity vector fields and ‘‘maxwellian” (gaussian)

Dv = ∇v − v , D∗
v = −∇v , M(v) = 1

(2π)d/2 e−|v |2/2 .

Nice structure of the equation:

∂t f + Tf + D∗
v · Dv f = −v · F∞∇xφ+ D∗

v · (f ∇xφ)

with Tf = v · ∇x f −∇xΦ∞ · ∇v f = −T ∗.
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Introduction Cauchy theory close to equilibrium Diffusive limit

How to study the perturbation equation

Difficulties of the linear equation

Linearized perturbed equation:

∂t f + Tf + D∗
v · Dv f = −v · F∞∇xφ

Naive estimate:

d
dt ‖f (t)‖2 + λ‖Dv f (t)‖2 . ‖∇xφ‖2
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How to study the perturbation equation

Difficulties of the linear equation

Linearized perturbed equation:

∂t f + Tf + D∗
v · Dv f = −v · F∞∇xφ

Naive estimate:

d
dt ‖f (t)‖2 + λ‖f (t)− ρ(t)M‖2 . ‖∇xφ‖2

(Gaussian Poincaré in v & ρ(t, x) =
∫

f (t, x , v)dv)
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Introduction Cauchy theory close to equilibrium Diffusive limit

How to study the perturbation equation

Difficulties of the linear equation
Linearized perturbed equation:

∂t f + Tf + D∗
v · Dv f = −v · F∞∇xφ

Naive estimate:

d
dt ‖f (t)‖2 + λ‖f (t)− ρ(t)M‖2 . ‖∇xφ‖2

Problem 1
How to control ρ?

Problem 2
Even in the ideal case of k sym-pos, ∇xφ appears as a bad term.
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Introduction Cauchy theory close to equilibrium Diffusive limit

How to study the perturbation equation

Problem 1: how to control ρ? Show hypocoercivity!

2D toy-model for hypocoercivity

du
dt =

(
0 1
−1 −1

)
u

Eigenvalues = −1

2
± i

√
3

2

I Incomplete energy estimate d
dt |u(t)|

2 = −2u2
2(t) 6⇒ decay O

(
e− t

2

)
I Introduce the equivalent (squared) norm (|η| < 1)

H(u) = u2
1 + u2

2 + 2ηu1u2 ⇒ d
dt H(u(t)) + H(u(t)) ≤ 0 .
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Introduction Cauchy theory close to equilibrium Diffusive limit

How to study the perturbation equation

Problem 1: how to control ρ? Show hypocoercivity!
Focusing on transport and diffusion: ∂t f + Tf +D∗

v · Dv f = 0

v

x

Transport along
level lines of |v |2

2 + E∞(x)
+ Diffusion in v
= Diffusion in (x , v)

Most strategies rely on energy estimates and the identities
d
dt 〈Af , f 〉 = 〈[A,T ]f , f 〉+ . . . and [∇v ,T ] = ∇x

Example: with A = ∇x∇v we retrieve using (x , v)-Poincaré
d
dt 〈Af , f 〉 = −‖∇x f ‖2 + · · · . −‖f ‖2 + ‖∇v f ‖2 + . . .

10 / 17
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How to study the perturbation equation

Problem 1: how to control ρ? Show hypocoercivity!
Focusing on transport and diffusion: ∂t f + Tf +D∗

v · Dv f = 0

v

x

Transport along
level lines of |v |2

2 + E∞(x)
+ Diffusion in v
= Diffusion in (x , v)

Combination for |α| ≤ 1 of


d
dt ‖∂

α
x ,v f ‖2 + ‖∂α

x ,v∇v f ‖2 . . . .

d
dt 〈Af , f 〉+ ‖∇x f ‖2 . . . .

allows to prove ‖f (t)‖2 + t3‖∇x f (t)‖2 + t‖∇v f ‖2 . e−λt‖f (0)‖2.
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Introduction Cauchy theory close to equilibrium Diffusive limit

How to study the perturbation equation

Problem 2: if k is sym-pos, ∇xφ must not be a bad term
MKV Reminder: if k is symmetric, free energy F is Lyapunov

⇒ good candidate for a norm

F [R∞ + ρ] = F [R∞] +

∫
Rd

(
|ρ|2R−1

∞ + ρφsym)dx +O(‖ρ‖3)

( φsym = ksym ∗ ρ & ksym(x) = k(x)+k(−x)
2 )

Same space (equivalent norm) but new hilbert structure:
Addala, Dolbeault, Li, Tayeb (2020)

|||f |||2 = ‖f ‖2 +
∫
Rd

ρφsymdx ≈ ‖f ‖2


boundedness of k ∗ (·) ⇒

∫
Rd

ρφsymdx . ‖ρ‖2

<k̂ ≥ 0 ⇒
∫
Rd

ρφsymdx =

∫
Rd

<k̂|ρ|2dξ ≥ 0


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How to study the perturbation equation

Problem 2: if k is sym-pos, ∇xφ must not be a bad term
MKV Reminder: if k is symmetric, free energy F is Lyapunov

⇒ good candidate for a norm

F [R∞ + ρ] = F [R∞] +

∫
Rd

(
|ρ|2R−1

∞ + ρφsym)dx +O(‖ρ‖3)

( φsym = ksym ∗ ρ & ksym(x) = k(x)+k(−x)
2 )

Same space (equivalent norm) but new hilbert structure:
Addala, Dolbeault, Li, Tayeb (2020)

|||f |||2 = ‖f ‖2 +
∫
Rd

ρφsymdx ≈ ‖f ‖2

New (skew-adjoint!) transport: T := T − vF∞ · ∇xφ
sym = −T ∗

∂t f + T f + D∗
v · Dv f = v · F∞∇xφ

skew

Conclusion: only v · F∞∇xφ
skew needs to be small.
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Introduction Cauchy theory close to equilibrium Diffusive limit

Linear and nonlinear estimates

Remaining problem: the nonlinearity

Equation with source χ instead of nonlinearity f ∇xφ:

∂t f + T f + D∗
v · Dv f = −v · F∞∇xφ

skew + D∗
v · χ

Proposition:
1. ∀s ≥ 0, we have‖f ‖X . ‖f (0)‖Hs

x L2
v
+ ‖χ‖Y (previous slides).

2. ∀s > d
q − 1

3 , we have ‖f ∇xφ‖Y . ‖f ‖2X .

NB: X encodes exponential decay & regularization (see Slide 18)

Consequence: Picard iteration ⇒ unique solution in X .

12 / 17



Introduction Cauchy theory close to equilibrium Diffusive limit

Linear and nonlinear estimates

Rough idea of the nonlinear proof: a toy model for VFP

Heuristic: Hypoellipticity in VFP ⇔ ∇v ' ∇
1
3x

∂tu + (1−∆)
1
3 u = ∇

1
3 (u∇k ∗ u) (VFP toy model)

Energy estimate in Hs :

d
dt ‖u‖2s + λ‖u‖2s+ 1

3

. ‖u∇k ∗ u‖2s
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Linear and nonlinear estimates

Rough idea of the nonlinear proof: a toy model for VFP

Heuristic: Hypoellipticity in VFP ⇔ ∇v ' ∇
1
3x

∂tu + (1−∆)
1
3 u = ∇

1
3 (u∇k ∗ u) (VFP toy model)

Energy estimate in Hs :

d
dt ‖u‖2s + λ‖u‖2s+ 1

3

.‖u‖2s‖∇k ∗ u‖2
W

d
q +δ,q

+ ‖u‖2Lr‖∇k ∗ u‖2W s,q

(Kato-Ponce with 1
r + 1

q = 1
2 & ‘‘ W

d
q +δ,q

↪→ L∞ ”)
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Linear and nonlinear estimates

Rough idea of the nonlinear proof: a toy model for VFP

Heuristic: Hypoellipticity in VFP ⇔ ∇v ' ∇
1
3x

∂tu + (1−∆)
1
3 u = ∇

1
3 (u∇k ∗ u) (VFP toy model)

Energy estimate in Hs :

d
dt ‖u‖2s + λ‖u‖2s+ 1

3

. ‖u‖2s
(
‖u‖2d

q +δ
+ ‖u‖2Lr

)
(Boundedness ‘‘ ∇k ∗ (·) : Hσ → W σ,q ”)
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Introduction Cauchy theory close to equilibrium Diffusive limit

Linear and nonlinear estimates

Rough idea of the nonlinear proof: a toy model for VFP

Heuristic: Hypoellipticity in VFP ⇔ ∇v ' ∇
1
3x

∂tu + (1−∆)
1
3 u = ∇

1
3 (u∇k ∗ u) (VFP toy model)

Energy estimate in Hs :

d
dt ‖u‖2s + λ‖u‖2s+ 1

3

. ‖u‖2s
(
‖u‖2d

q +δ
+ ‖u‖2Lr

)
We want s such that s + 1

3 > d
q and Hs+ 1

3 ↪→ Lr .

Same condition: s > d
q − 1

3 .
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Introduction Cauchy theory close to equilibrium Diffusive limit

Introduction

The diffusive scaling

We consider the (perturbation) equation in diffusive scaling:

ε2∂t f ε + εTf ε + D∗
v · Dv f ε = εv · F∞∇xφ

ε + εD∗
v · (f ε∇xφ

ε)

All previous estimates still hold uniformly in ε ∈ (0, 1):

• Decay O
(
e−λt) • Regularization O

(
t−3

)
Naive energy estimate:

∫ ∞

0
e2λt‖Dv f ε(t)‖2dt . ε2‖f ε(0)‖2
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Introduction

The diffusive scaling

We consider the (perturbation) equation in diffusive scaling:

ε2∂t f ε + εTf ε + D∗
v · Dv f ε = εv · F∞∇xφ

ε + εD∗
v · (f ε∇xφ

ε)

All previous estimates still hold uniformly in ε ∈ (0, 1):

• Decay O
(
e−λt) • Regularization O

(
t−3

)
Naive energy estimate:

∫ ∞

0
e2λt‖f ε(t)− ρε(t)M‖2dt . ε2‖f ε(0)‖2

Our goal

Show f ε(t, x , v) ε→0−−−→ ρ0(t, x)M(v) where R = R∞ + ρ0 solves

∂tR = ∆xR +∇x · (R∇x(E +Φ)) .
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Introduction

The diffusive scaling
We consider the (perturbation) equation in diffusive scaling:

ε2∂t f ε + εTf ε + D∗
v · Dv f ε = εv · F∞∇xφ

ε + εD∗
v · (f ε∇xφ

ε)

All previous estimates still hold uniformly in ε ∈ (0, 1):
• Decay O

(
e−λt) • Regularization O

(
t−3

)
Naive energy estimate:

∫ ∞

0
e2λt‖f ε(t)− ρε(t)M‖2dt . ε2‖f ε(0)‖2

Strategy
(1) Macroscopic behavior: ρε = ρ0 +O(ε)
(2) Well prepared case: f εwp = ρε +O(ε)
(3) Ill prepared case: f ε = f εwp + explicit initial layer +O(ε)

Conclusion: f ε = ρ0 + explicit initial layer +O(ε)
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Introduction Cauchy theory close to equilibrium Diffusive limit

Proving macroscopic convergence

Step 1: Macroscopic behavior

Equation for the density ρε (and the flux jε =
∫

vf εdv)

∂t(ρ
ε − ε∇x · jε) =pertubed MKV(ρε − ε∇x · jε)

+O
(
∇2

x(f ε − ρεM)
)
+O

(
ε∇3

x(f ε − ρεM)
)

Comparing with the solution ρ0 of perturbed MKV and using∫
e2λt‖f ε(t)− ρε(t)M‖2Hs dt . ε2‖f ε(0)‖Hs

we obtain (for small initial data)

sup
t≥0

eλt‖ρε − ρ0‖Hs . ε‖f ε(0)‖Hs+1

See Slide 19.
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Introduction Cauchy theory close to equilibrium Diffusive limit

Microscopic behavior

Step 2: Microscopic behavior in the well prepared case

Assume the initial data is well-prepared:

f ε(0, x , v) = ρ0(0, x)M(v)

Take the microscopic part of f ε:

∂t(f ε − ρεM) +
1

ε2
D∗

v · Dv (f ε − ρεM) = O
(
1

ε
∇x f ε

)
+ . . .

Energy estimate (zero at t = 0):

d
dt ‖f ε(t)−ρε(t)M‖2Hs +

λ

ε2
‖f ε(t)−ρε(t)M‖2Hs . e−λt‖f ε(0)‖Hs+1

which yields eλt‖f ε(t)− ρε(t)M‖Hs . ε‖f ε(0)‖Hs+1 .
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Ill prepared case

Step 3: The ill prepared case
Initial layer ansatz f ε

il :
∂t f εil = pertubed VFPε (f εil )−

1

ε2
ρ[f ε

il ] ,

f εil (0) = f ε(0)− ρε(0)M ,

which yields ‖f ε(t)‖Hs . e−λt/ε2‖f ε(0)− ρε(0)M‖Hs .

Equation for uε = f ε −
(

f ε
wp + f ε

il

)
:

∂tuε +
1

ε2
(D∗

v · Dv )uε +
1

ε
Tuε =

1

ε2
ρ[f ε

il ]+ . . . , uε(0) = 0

which yields eλt‖uε(t)‖Hs . ε‖f ε(0)‖Hs+1 .
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Appendix

Norms for the linear and nonlinear flow of VFP

Norm for controlled quantities:

‖f ‖2X = sup
t≥0

e2λt
(
‖f (t)‖2Hs

x L2
v
+ t3‖f (t)‖2Hs+1

x L2
v
+ t‖f (t)‖2Hs

x H1
v

)
+ . . .

Norm for source terms:

‖f ‖2Y =

∫ ∞

0
e2λt

(
‖f (t)‖2Hs

x L2
v
+ t3‖f (t)‖2Hs+1

x L2
v
+ t‖f (t)‖2Hs

x H1
v

)
dt
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Appendix

Macroscopic behavior

Equation for the density ρε (and the flux jε =
∫

vf εdv)
∂tρ

ε + 1
ε∇x · jε = 0

jε
ε
= − (∇xρ

ε + ρε∇x(E∞ + φε) + R∞∇xφ
ε)− ε∂t jε

+O (∇x(f ε − ρεM))
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Appendix

Macroscopic behavior

Equation for the density ρε

∂tρ
ε = pertubed MKV(ρε) + ε∂t∇x · jε +O

(
∇2

x(f ε − ρεM)
)
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Macroscopic behavior

Equation for the density ρε

∂t(ρ
ε − ε∇x · jε) =pertubed MKV(ρε − ε∇x · jε)

+O
(
∇2

x(f ε − ρεM)
)
+O

(
ε∇3

x(f ε − ρεM)
)
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Appendix

Macroscopic behavior
Equation for the density ρε

∂t(ρ
ε − ε∇x · jε) =pertubed MKV(ρε − ε∇x · jε)

+O
(
∇2

x(f ε − ρεM)
)
+O

(
ε∇3

x(f ε − ρεM)
)

Using the naive energy estimate∫
e2λt‖f ε(t)− ρε(t)M‖2Hs dt . ε2‖f ε(0)‖2Hs

we establish that

eλt ∥∥ρ0 − (ρε − ε∇x · jε)
∥∥
Hs . ε‖f ε(0)‖Hs+1 + ε2‖f ε(0)‖Hs+2

NB: Regularizing term ∆x in MKV ⇒ reduced loss of regularity.
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Equation for the density ρε

∂t(ρ
ε − ε∇x · jε) =pertubed MKV(ρε − ε∇x · jε)

+O
(
∇2

x(f ε − ρεM)
)
+O

(
ε∇3

x(f ε − ρεM)
)

Using the naive energy estimate∫
e2λt‖f ε(t)− ρε(t)M‖2Hs dt . ε2‖f ε(0)‖2Hs

we establish that

eλt ∥∥ρ0 − ρε
∥∥
Hs . ε‖f ε(0)‖Hs+1 + ε2‖f ε(0)‖Hs+2

NB: Use that ‖∇ · jε‖Hs . ‖f ε‖Hs+1 .
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Appendix

Macroscopic behavior
Equation for the density ρε

∂t(ρ
ε − ε∇x · jε) =pertubed MKV(ρε − ε∇x · jε)

+O
(
∇2

x(f ε − ρεM)
)
+O

(
ε∇3

x(f ε − ρεM)
)

Using the naive energy estimate∫
e2λt‖f ε(t)− ρε(t)M‖2Hs dt . ε2‖f ε(0)‖2Hs

we establish that

eλt ∥∥ρ0 − ρε
∥∥
Hs . ε‖f ε(0)‖Hs+1

NB: Regularization of the initial data
‖f̃ ε(0)‖Hs+2 . 1

ε‖f ε(0)‖Hs+1 .
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