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Introduction



» Confining force —VE
» —Vk(z) = force at relative distance z = mean force —V®
» Depending on the scale: diffusion, damping

Y2

—
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Random fluctuation and damping of velocity:

X! = —X|-VE-V® + v/2dB,
Vlasov-Fokker-Planck : phase-space density F(t,x, v) of particles
OF + v - ViF —Vy(E+®)-V,F =V, (VF +V,F)

B(tx) = [ Kx=y)R(Ep)y

where R(t,x) = / F(t,x,v)dv is the macoscopic density.
Rd
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Random fluctuation of position:

X! = -VE-V® +/2dB;
McKean-Vlasov : density R(t, x) of particles

OeR = AR + Vy - (RVy (E + )
B(tx) = [ K= y)R(ty)y

1.

VFP with time scale ~ ¢, fluctuation/damping ~ =:

1
F(t,x,v) 2% ——R(t,x)e 1"/
V2T
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Introduction Cauchy theory close to equilibrium Diffusive limit
00080000 0000000 00000

The VFP and MKV models

Our motivation:

1. When is the equilibrium (non-)unique?
2. When is it (un-)stable? Attractive?

Related questions:

1. What is the rate of convergence to equilibrium?
2. Regularizing effects?
3. How well does MKV approximates VFP?
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1
Free energy: F[R] = / Rlongx+/ R (E—i— —<I>) dx
Rd Rd 2

dF[R]

Cdt + /Rd R ‘VX log (eE+<I>R) ‘zdx = /Rd(atR)(I)skede

with @skew — feskew 4 R induced by kSkew(x) = KX)=k(=x),

Consequence: k symmetric = F Lyapunov
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Free energy and equilibria

Free energy for McKean-Vlasov (similar for VFP)

1
Free energy: F[R| = / Rlog R dx —1—/ R <E + <I>> dx
Rd Rd 2

dfd[tR] + /Rd R ‘vx log <eE+‘1’R> ‘2 dx = /Rd(atR)@Skerx

with ®skew — gskew o R induced by kSkeW(X) _ W

Consequence: k symmetric = F Lyapunov

There is always at least one equilibrium R, = Zie*E*‘DOO, and

oo

(Gr [RL) - R [R2]) - (RL—RY) =

Consequence: F strictly convex = unique equilibrium
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Free energy and equilibria

Free energy for McKean-Vlasov (similar for VFP)

1
Free energy: F[R| = / Rlongx+/ R <E—|— —k * R> dx
Rd Rd 2

R 2
dFIR] | / R‘Vxlog (eEJF‘I’R)’ dx = / (9,R) D" dx
dt Rd Rd

with ®skew — kskew y R induced by k€% (x) = %k(—x)

Consequence: k symmetric = F Lyapunov

There is always at least one equilibrium R % —E—=%> 3nd
dF dF [ 1 9
<dR Reo] = R (R ]) (R — R%) =

Consequence: Rk >0 = unique equilibrium
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The ideal situation seems to be when k is symmetric and k>0.

» Symmetric & positive: Coulomb : k(x) = |x|>~¢
Unique globally attractive equilibrium for VFP: Bouchut, Dolbeault (1995)
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Examples for MKV and VFP

Cauchy theory close to equilibrium

Diffusive limit
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Examples: effect of the interactions on the dynamics

The ideal situation seems to be when k is symmetric and k > 0.
» Symmetric & positive: Coulomb : k(x) = |x|?>~9
And otherwise?

» Symmetric & positive: Kuramoto, k(x) = —/cos(x) (I > 1)
Carillo et Al. (2020), work in progress with Cesbron, Herda
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Examples for MKV and VFP

Examples: effect of the interactions on the dynamics

The ideal situation seems to be when k is symmetric and k > 0.
» Symmetric & positive: Coulomb : k(x) = |x|?>~¢

And otherwise?
» Symmetric & positive: Kuramoto, k(x) = —/cos(x) (I > 1)

> W: Synchrotron model

Roussel (PhD, 2014), Cai (2011)
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Main result

Main results
We make the following assumptions:
1. The interaction term is a bounded operator
[k plle + VK plle S llollnez,  prg=>2

2. The interactions are almost symmetric—positive

[k 5 pl 1o + [[V K 5 pll o < 6llpll1e2
0<s<1)
ERVANENEN 2
(k*p,p)p2 = <kp,p>L2 > =0lpllL1n2

NB: the symmetric-positive part of k can be large!

3. E is “smooth” and “confines in a bounded region of space”
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We make the following assumptions:
1. The interaction term is a bounded operator

2. The interactions are almost symmetric—positive
3. E is "smooth” and “confines in a bounded region of space”

The steady state F, is locally attractive and the flow regularizes:

Vn,t >0 t2eM||F(t) — Foollystn < CallF(0) = Fooll7es

where s > % — 1 and ||F|lus = I|F/ Fooll Hs (o)
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Main result

Main results

We make the following assumptions:
1. The interaction term is a bounded operator
2. The interactions are almost symmetric—positive
3. E is "smooth"” and “confines in a bounded region of space”

Theorem
The steady state F, is locally attractive and the flow regularizes:

Yt >0 t2eM||F(t) — Foollzgsin < CallF(0) — Follaes

where s > g — % and ||Fl3s ~ HF”H5<F;1) + HWXE‘SF”B(F;OI)'
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Main result
Main results

We make the following assumptions:
1. The interaction term is a bounded operator
2. The interactions are almost symmetric—positive
3. E is "smooth” and “confines in a bounded region of space”

Novelties of the Cauchy theory
» Taking into account non-symmetric interactions
Cesbron, Herda (2024): weakly nonlinear regime for synchrotron
» No size restriction for symmetric-positive interactions
Addala, Dolbeault, Li, Tayeb (2020), Toshpulatov (2025): Poisson
» Working in H* spaces with s € [0, c0)

Allows for weakly regularizing interactions (g = 2), higher order regularization

1
. . . . T =
» For Poisson interactions: strongly nonlinear regime in H¢ ' L2
1
Hérau, Thomann (2016): weakly nonlinear regime in HX%;r

)
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Main result

Main results

We make the following assumptions:
1. The interaction term is a bounded operator
2. The interactions are almost symmetric—positive
3. E is "smooth” and “confines in a bounded region of space”

Theorem
The scaled density F¢(t,x,v) = F (5%, = v) is the sum of

» its limit R(t,x)M(v) where R solves MKV with

R(O,X)Z/Fs(om V)Av,  [[R(t)=Roollss S € ||R(0)—Roo 342

> an initial layer controlled by e *t/<*||F=(0) — R(0)M||3

> an error term controlled by ce=*||F%(0) ||+
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Main result

Main results

We make the following assumptions:
1. The interaction term is a bounded operator
2. The interactions are almost symmetric—positive
3. E is "smooth” and “confines in a bounded region of space”

Novelties of the diffusive limit

» Uniform rate of convergence in € and t by energy methods
Blaustein (2023), Herda, Rodrigues (2018): integral rate of convergence

Zhong (2022): spectral method
» Loss of only 1 derivative for convergence O(¢)
Zhong (2022): 2 derivatives
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How to study the perturbation equation

Perturbation: (F,®, R) = (Fu, oo, Ry) + (f, 0, p)
Functional framework: hilbert space L2(F_'dxdv) where
LR
Foo(Xv V):Te 2 I Eoo(X):E(X)+<I>oo(X)

We denote the velocity vector fields and “‘maxwellian” (gaussian)

1

—|v|?/2
e v2/2

Dv:Vv_V> D*:_VV7 M(V):

v

Nice structure of the equation:
Of+Tf+ D, -D,f =—v-F Vp+ D, (fVxop)
with TF =v -V, f = VP -V, f=-T%
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Linearized perturbed equation:

Bef + Tf + D - Dyf = —v - Fac Vo)

Naive estimate:

d
ZIF O+ AIDAD)* S (V0]
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Linearized perturbed equation:

wf+TF+ D) D,f =—v-F Vi

Naive estimate:

d
FIFOI+AIF() = p(OM]* S [Vx0]”

(Gaussian Poincaré in v &  p(t,x) = [f(t,x,v)dv)
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Linearized perturbed equation:

Of + Tf + Di - Dyf = —v - Fou Vi

Naive estimate:

d
IO+ A£ () = p(OM]* S (V0]

How to control p?

Even in the ideal case of k sym-pos, V¢ appears as a bad term.

9/17
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How to study the perturbation equation

Cauchy theory close to equilibrium
00®0000

Diffusive limit
00000

Problem 1: how to control p? Show hypocoercivity!

du
dt

1

2D toy-model for hypocoercivity
)

(%
V3

1
Ei lues = —— &+ i—
igenvalues 5 T3

> Incomplete energy estimate - |u(t)|> = —2u3(t) # decay O (e‘é)

» Introduce the equivalent (squared) norm (|n| < 1)

L H(u() + H(u(r) < 0.

Hw) =i + 2 = %

=
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How to study the perturbation equation

Problem 1: how to control p? Show hypocoercivity!

Focusing on transport and diffusion: 0:f + Tf+D; - D,f =0

Transport along

level lines of @ + Ex(x)

+ Diffusion in v

= Diffusion in (x, v)

Most strategies rely on energy estimates and the identities

T ALH =(ATIFf)+... and [V, T] =V,

Example: with A= V,V, we retrieve using (x, v)-Poincaré

d ) .
VAR ) = =V |2 4 S =17+ IV I+

10/17



Focusing on transport and diffusion: 0:f + Tf+D; - D,f =0

Transport along
2
level lines of % + Ex(x)
+ Diffusion in v

= Diffusion in (x, v)

Fellog 1P+ 102 VP < -
Combination for |a| <1 of

LIAFF) + | VAF2 S ...

allows to prove ||f(t)]|? + t3||Vxf(t)||2 + t]| V., f]|? < e 2| F(0)]12.
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How to study the perturbation equation

Problem 2: if k is sym-pos, V¢ must not be a bad term

MKV Reminder: if k is symmetric, free energy F is Lyapunov
= good candidate for a norm

FlRos+7) = FIRel + [ (1pPRZ +p0™) e+ (o)
( P = ksym % p & ksym(X) — k(x)+2k(7><) )

Same space (equivalent norm) but new hilbert structure:

Addala, Dolbeault, Li, Tayeb (2020)

2 ;
I = 111> + /Rd pe™Mdx ~ ||f||?

boundedness of k x () = / pd™™dx < ||pl|?
JRd

Rk>0= | pop¥™dx = / Rk|p|>ds > 0
]Rd

JRd 11/17
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How to study the perturbation equation

Problem 2: if k is sym-pos, V¢ must not be a bad term

MKV Reminder: if k is symmetric, free energy F is Lyapunov
= good candidate for a norm

FlRo+ 0= FIRu)+ [ (PRL +p0™) de+ O(o])
Rd
( P = ksym % p & ksym(x) — k(X)+2k(—X) )

Same space (equivalent norm) but new hilbert structure:
Addala, Dolbeault, Li, Tayeb (2020)

2 -
I = 11 + /Rd pp¥Mdx & ||f]|?

New (skew-adjoint!) transport: 7 := T — vF,, - V0" = =T*
Of + TF+ D} - D,f =v-Fy VW

| skew

Conclusion: only v - F.. V¢ needs to be small.
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Linear and nonlinear estimates

Remaining problem: the nonlinearity

Equation with source x instead of nonlinearity fV ,¢:

Of +TF+D:-Df =—v-FyuVy¢™™ + D - x

Proposition:

2 S 1F(0)|[sr2 + lIx|l# (previous slides).
2. Vs > — 3, we have [[fViolla S IIf]%-

NB: 2" encodes exponential decay & regularization (see Slide 18)

Consequence: Picard iteration = unique solution in Z .
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1
Heuristic: Hypoellipticity in VFP < V,, ~ V3

Oru+ (1 — A)%u = V%(qu * 1) (VFP toy model)
Energy estimate in H*:

d
o lulls + Al s S luVies ullg

1
S+§
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1
Heuristic: Hypoellipticity in VFP & V, ~ V3

Beu—+ (1 — A)su=V3(uVk * u) (VFP toy model)

Energy estimate in H*:

||U||s + Al s Slulll Ve UH2
+ ||U||Lr||Vk* Ullws,q
(Kato-Ponce with 1 + =5 & " Wata oy oo ")
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1
Heuristic: Hypoellipticity in VFP < V, ~ V3§

Oru+ (1 — A)%u = V%(qu * 1) (VFP toy model)

Energy estimate in H*:

d 2 2 2 2 2
qellulls + Alulis, xS Hlulls { llufa 5 + lulli-

(Boundedness ** Vk x () : HT — W9 ")
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1
Heuristic: Hypoellipticity in VFP < V,, ~ V3

Oru+ (1— A)%u = V%(qu * U) (VFP toy model)
Energy estimate in H*:
L2+ Alul2, S o2 (il 5+ ul?
dtus US_I_%NUS Ug_Hs ujlr

1
We want s such that s + % > g and HSts5 — ",

Same condition: s > % —

Wl

13/17
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We consider the (perturbation) equation in diffusive scaling:

205 +eTF 4+ Dt - D ff = cv - Fou V™ 4 D5 - (FFV¢7)
All previous estimates still hold uniformly in € € (0, 1):

e Decay O (e™t) e Regularization O (t7?)

o0
Naive energy estimate: / e?M||D, FE(t))%de < e2(|F5(0)|?
0
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We consider the (perturbation) equation in diffusive scaling:

205 +eTF 4+ Dt - D ff = cv - Fou V™ 4 D5 - (FFV¢7)
All previous estimates still hold uniformly in € € (0, 1):

e Decay O (e™t) e Regularization O (t7?)

Naive energy estimate: / e[ Fe(t) — po(t)M||2dt < €2||F5(0)]]?
0
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We consider the (perturbation) equation in diffusive scaling:

20 f° +eTF 4+ D - D ff = cv - Fou Vo™ 4 D5 - (FFV¢°)
All previous estimates still hold uniformly in € € (0, 1):

e Decay O (e™t) e Regularization O (t73)

Naive energy estimate: / e[ Fe (1) — po(t)M||2dt < €2||F5(0)]|?
0

Show f4(t, x, v) =0 p°(t, x)M(v) where R = Ry, + p° solves

OiR = AR + V. - (RV(E + ®)) .
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Introduction

The diffusive scaling

We consider the (perturbation) equation in diffusive scaling:
£20:f° + eTF  + D} - D f° = cv- Fou V¢ + D} - (FFV %)
All previous estimates still hold uniformly in € € (0, 1):

e Decay O (e™t) e Regularization O (t7?)
oo
Naive energy estimate: / e FE(t) — pf ()M 12dt < €2]|F5(0)]?
0

Strategy

(1) Macroscopic behavior: p° = p' + O(¢)
(2) Well prepared case: f;, = p° + O(e)

(3) Il prepared case: f° = f; + explicit initial layer+ O(¢)

Conclusion: ¢ = p° + explicit initial layer + O(e)

14/17



Equation for the density p° (and the flux j© = [ vf*dv)

O(p” — eV - j°) =pertubed MKV(p® — eV - j°)
+ O (V(f = p"M)) + O (eV(F° = p°M))

Comparing with the solution p° of perturbed MKV and using
0 (0 - 5 ()Mt 5 210) e
we obtain (for small initial data)
Sup 10" = s < ellF5(0) [l

See Slide 19.
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Microscopic behavior

Step 2: Microscopic behavior in the well prepared case

Assume the initial data is well-prepared:
F(0,x,v) = p°(0,x)M(v)
Take the microscopic part of f:
€ £ 1 * 13 £ 1 €
Energy estimate (zero at t = 0):
d € € 2 A € € 2 < At g
O =P (OMlgs + S5 (8) = p () Ml3e S e (IF7(0) s

which yields e ||fe(t) — p°(t)M||3s < €| FE(0) | pyss1.

16/17



Initial layer ansatz f;:

1
Oifij = pertubed VFP* (f7) — — p[fj],
€
fi(0) = £5(0) — p*(O)M,
which yields [|F2(t)|j3s < e 2/ ||F2(0) — p(0) M|| 5.
Equation for u® = f¢ — (fjp + f,,e)
851D*D61T5—1f6 f(0)=0
tu +€—2( v Dv)u +o Iy —6_29[il]+---a u=(0) =

which yields e ||uf(t)]|ns < €| F2(0)]|sta-
17/17
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Norm for controlled quantities:

A
11 = sup e (IF(OlFpuz + N33 + 1O )+

Norm for source terms:

118 = [ e (17 + 10 oy + (Ol )
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Equation for the density p° (and the flux j¢ = [ vf*dv)

(9tp5—|—%vx-j5 =0

i€
T = (Va0 Vul B 1+ 67) + R Vi) — 017

+O (Vu(f* = p"M))
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Equation for the density p°

Orp° = pertubed MKV(p®) +€0:Vy - j°+ O (Vi(fs —p°M))

19/17



Equation for the density p°

Be(p° — £V« - °) =pertubed MKV(p® — £V, - j°)
+O (VAP ~ M) + O (VA(F — 7M))
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Equation for the density p°

B(p° — eV - j°) =pertubed MKV (p — £V - %)
+O (VE(FF = p*M)) + O (eVi(FF — p°M))

Using the naive energy estimate
/ez”llfs(t) — pF()M|Fsde < €2[1F5(0) |35
we establish that

S ellfF(0) s + 2[1F2(0) 1352

M ” = (0" — Vi )| S

NB: Regularizing term A, in MKV = reduced loss of regularity.
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Equation for the density p°

8:(p° — eV - j°) =pertubed MKV(p* — eV, - j°)
+O (VE(FF = p"M)) + O (eVi(FF — p°M))

Using the naive energy estimate
/emllfe(t) — pF()M|Fsde < €2[1F(0) |3,
we establish that

s S ENFE(0) s + €2[[F5(0) |42

eAt HPO o pe|
NB: Use that ||V - j&||xs < [[F6]|pgstr-
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Equation for the density p°

8:(p° — eV - j°) =pertubed MKV (p° — eV, - j°)
+ 0O (VA(F* = p"M)) + O (V3 (F* — p°M))

Using the naive energy estimate
/ez“llfe(t) — P (O)M|3sdt S €2[15(0)[13s

we establish that

0" = ol S EllFF(0)lpgs

NB: Regularization of the initial data
1£2(0) g2 < ZI1F2(0) g5
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